Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

The low-temperature phase of diethylammonium tetrachloridocuprate(II)

Christoph E. Strasser, Stephanie Cronje and Helgard G. **Raubenheimer***

Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa Correspondence e-mail: hgr@sun.ac.za

Received 17 October 2007; accepted 29 October 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.005 Å; R factor = 0.045; wR factor = 0.111; data-to-parameter ratio = 24.0.

The crystal structure of the low-temperature phase of diethylammonium tetrachloridocuprate(II), $(C_4H_{12}N)_2$ -[CuCl₄], has been determined by Simonsen & Harlow [(1977). Am. Crystallogr. Assoc. Ser. 2 Vol. 5, No. 1, Abstract HN5], but no atomic coordinates are available. We therefore redetermined the structure at 100 K. It comprises three crystallographically independent formula units linked by hydrogen bonds into a two-dimensional network. One tetrachloridocuprate(II) anion is virtually square-planar while the two others are tetrahedrally distorted.

Related literature

The compound was prepared according to Van Oort (1988). For a previous structure report of the low-temperature polymorph of diethylammonium tetrachloridocuprate(II), see: Simonsen & Harlow (1977). The high-temperature polymorph [phase transition at 323 (1) K] was determined by Bloomquist et al. (1988), and high- and low-temperature forms of the dipropylammonium analogue were reported by Bond et al. (1988).

Experimental

Crystal data

$(C_4H_{12}N)_2[CuCl_4]$	V = 4912 (5) Å ³
$M_r = 353.63$	Z = 12
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
$a = 7.315 (4) \text{ Å}_{-}$	$\mu = 1.96 \text{ mm}^{-1}$
b = 14.843 (8) Å	T = 100 (2) K
c = 45.24 (2) Å	$0.45 \times 0.25 \times 0.15$ mm
$\beta = 90.258 \ (9)^{\circ}$	

 $R_{\rm int} = 0.055$

28089 measured reflections

10012 independent reflections

8231 reflections with $I > 2\sigma(I)$

Data collection

Bruker APEX CCD area detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2002) $T_{\rm min} = 0.421, T_{\rm max} = 0.742$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	418 parameters
$wR(F^2) = 0.111$	H-atom parameters constrained
S = 1.09	$\Delta \rho_{\rm max} = 0.78 \ {\rm e} \ {\rm \AA}^{-3}$
10012 reflections	$\Delta \rho_{\rm min} = -0.49 \text{ e} \text{ \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

8	1 ()	,	
Cu1-Cl13	2.2371 (12)	Cu2-Cl22	2.2764 (13)
Cu1-Cl11	2.2410 (12)	Cu2-Cl24	2.2775 (13)
Cu1-Cl14	2.2540 (12)	Cu3-Cl31	2.2372 (13)
Cu1-Cl12	2.2570 (13)	Cu3-Cl33	2.2636 (13)
Cu2-Cl23	2.2550 (13)	Cu3-Cl32	2.2683 (12)
Cu2-Cl21	2.2570 (13)	Cu3-Cl34	2.2700 (13)
Cl13-Cu1-Cl11	146.02 (4)	Cl23-Cu2-Cl24	89.24 (4)
Cl13-Cu1-Cl14	95.57 (5)	Cl21-Cu2-Cl24	90.72 (4)
Cl11-Cu1-Cl14	94.24 (5)	Cl22-Cu2-Cl24	179.32 (3)
Cl13-Cu1-Cl12	94.18 (5)	Cl31-Cu3-Cl33	159.70 (4)
Cl11-Cu1-Cl12	95.64 (5)	Cl31-Cu3-Cl32	92.64 (5)
Cl14-Cu1-Cl12	145.95 (4)	Cl33-Cu3-Cl32	91.02 (4)
Cl23-Cu2-Cl21	177.81 (4)	Cl31-Cu3-Cl34	92.80 (5)
Cl23-Cu2-Cl22	90.77 (4)	Cl33-Cu3-Cl34	90.17 (4)
Cl21-Cu2-Cl22	89.25 (4)	Cl32-Cu3-Cl34	160.99 (4)

Table 2	
Hydrogen-bond g	eometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1A\cdots$ Cl11	0.92	2.31	3.214 (3)	166
$N1 - H1B \cdot \cdot \cdot Cl21$	0.92	2.43	3.298 (3)	158
$N2-H2A\cdots Cl12$	0.92	2.29	3.197 (3)	168
$N3-H3A\cdots$ Cl13	0.92	2.31	3.210 (3)	166
$N3-H3B\cdots Cl23^{i}$	0.92	2.44	3.298 (3)	155
$N4-H4A\cdots$ Cl14	0.92	2.30	3.205 (3)	169
$N4-H4B\cdots Cl22^{ii}$	0.92	2.44	3.306 (3)	158
$N5-H5A\cdots$ Cl24	0.92	2.45	3.315 (3)	156
$N5-H5B\cdots Cl32$	0.92	2.27	3.190 (3)	176
N6-H6A···Cl31 ⁱⁱⁱ	0.92	2.49	3.320 (3)	151
$N6-H6B\cdots$ Cl33	0.92	2.28	3.188 (3)	172

Symmetry codes: (i) x, y + 1, z; (ii) -x + 1, -y + 1, -z; (iii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Atwood & Barbour, 2003; Barbour, 2001); software used to prepare material for publication: X-SEED.

We thank the National Research Foundation (NRF) of South Africa and Stellenbosch University for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2156).

References

- Atwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3-8.
- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bloomquist, D. R., Pressprich, M. R. & Willett, R. D. (1988). J. Am. Chem. Soc. 110, 7391–7398.
- Bond, M. R., Johnson, T. J. & Willett, R. D. (1988). Can. J. Chem. 66, 963–973. Bruker (2002). SADABS (Version 2.05) and SMART (Version 5.628). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2003). SAINT (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Simonsen, S. H. & Harlow, R. L. (1977). Am. Cryst. Assoc. Ser. 2 Vol. 5, No. 1, Abstract HN5.
- Van Oort, M. J. M. (1988). J. Chem. Ed. 65, 84.

Acta Cryst. (2007). E63, m2915-m2916 [doi:10.1107/S1600536807054098]

The low-temperature phase of diethylammonium tetrachloridocuprate(II)

C. E. Strasser, S. Cronje and H. G. Raubenheimer

Comment

In the course of an experiment in the inorganic chemistry practical at our university the thermochromic behaviour of diethylammonium tetrachloridocuprate(II) (I) is studied. Surprisingly, atomic coordinates of the low-temperature phase have only been presented at a meeting of the American Crystallographic Association (Simonsen & Harlow, 1977), but not published in a journal or deposited in a data base. However, the structure is briefly discussed in a later publication together with the high-temperature phase (Bloomquist *et al.*, 1988). Redetermination of the crystal and molecular structure was now done at 100 K from a crystal obtained at 293 K.

The molecular and crystal structures of both high- and low-temperature phases of other dialkylammonium tetrachlorocuprates(II), the anion being approximately tetrahedral and square-planar, respectively, have been determined, for example the dipropylammonium analogue (Bond *et al.*, 1988).

The asymmetric unit of (I) is shown in Figure 1. The compound consists of three crystallographically independent formula units of which the anion containing Cu2 is virtually square-planar, the others show a certain degree of distortion towards tetrahedral. The r.m.s. deviations of the atoms constituting the anions from a plane fitted to them is 0.588, 0.017 and 0.344 Å for Cu1, Cu2 and Cu3, respectively. Except for N2 which only engages in one hydrogen bond to Cl12, the other five diethylammonium cations each link two tetrachlorocuprate anions to form a two-dimensional hydrogen-bond network in the (101) plane. Likewise, all chlorine atoms of the anions are hydrogen bond acceptors with the exception of Cl34 (see Table). The connectivity of the hydrogen bonds is shown in Figure 2, a perspective view in Figure 3. Bond lengths and angles are unexceptional.

Experimental

The compound was prepared according to literature (Van Oort, 1988) and crystallized at room temperature by diffusing diethyl ether vapour into an ethanolic solution. A suitable emerald green crystal was quickly covered in oil and transferred to the cold nitrogen stream of the diffractometer.

Refinement

All H atoms were positioned geometrically (C—H = 0.98 and 0.99 Å for CH₃ and CH₂, respectively; and N—H = 0.92 Å) and constrained to ride on their parent atoms; $U_{iso}(H)$ values were set at 1.2 times $U_{eq}(C,N)$ for CH₂ or NH₂ and 1.5 times $U_{eq}(C)$ for CH₃.

Figures

Fig. 1. Asymmetric unit of (I). Ellipsoids are shown at the 50% probability level, hydrogen bonds are shown with dashed lines. C—H hydrogen atoms are omitted for clarity.

Fig. 2. Schematic representation of the hydrogen bonding network. Hydrogen bonds are shown as dashed lines and bonds to symmetry equivalent atoms as wiggled lines. Symmetry operators: (i) x, y + 1, z; (ii) -x + 1, -y + 1, -z; (iii) -x + 1/2, y + 1/2, -z + 1/2; (iv) -x + 1/2, y - 1/2, -z + 1/2; (v) x, y - 1, z.

Fig. 3. Perspective view of the hydrogen-bonded layer. Atoms are drawn as spheres of arbitrary radius, only N—H hydrogen atoms are shown. Symmetry operators: (iii) -x + 1/2, y + 1/2, -z + 1/2; (iv) -x + 1/2, y - 1/2, -z + 1/2; (vi) x - 1/2, -y + 1/2, z + 1/2; (vii) x - 1/2, -y + 3/2, z + 1/2; (viii) -x, -y + 1, -z + 1.

diethylammonium tetrachloridocuprate(II)

$(C_4H_{12}N)_2[CuCl_4]$	$F_{000} = 2196$
$M_r = 353.63$	$D_{\rm x} = 1.435 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 7081 reflections
a = 7.315 (4) Å	$\theta = 2.3 - 26.4^{\circ}$
<i>b</i> = 14.843 (8) Å	$\mu = 1.96 \text{ mm}^{-1}$
c = 45.24 (2) Å	T = 100 (2) K
$\beta = 90.258 \ (9)^{\circ}$	Block, green
$V = 4912 (5) \text{ Å}^3$	$0.45\times0.25\times0.15~mm$
Z = 12	

Data collection

Bruker APEX CCD area detector diffractometer	10012 independent reflections
Radiation source: fine-focus sealed tube	8231 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.055$
T = 100(2) K	$\theta_{\text{max}} = 26.6^{\circ}$
ω–scans	$\theta_{\min} = 0.9^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2002)	$h = -7 \rightarrow 9$
$T_{\min} = 0.421, \ T_{\max} = 0.742$	$k = -18 \rightarrow 18$
28089 measured reflections	$l = -56 \rightarrow 50$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.045$	H-atom parameters constrained
$wR(F^2) = 0.111$	$w = 1/[\sigma^2(F_o^2) + (0.0356P)^2 + 2.1467P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.09	$(\Delta/\sigma)_{\text{max}} = 0.001$
10012 reflections	$\Delta \rho_{max} = 0.78 \text{ e} \text{ Å}^{-3}$
418 parameters	$\Delta \rho_{\rm min} = -0.49 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

Special details

methods

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cu1	0.50841 (5)	0.74787 (2)	0.084049 (8)	0.02153 (10)
Cu2	0.92389 (5)	0.24762 (2)	0.083225 (8)	0.01820 (10)
Cu3	0.46748 (5)	0.24221 (2)	0.255011 (8)	0.02002 (10)
Cl11	0.58990 (12)	0.62256 (5)	0.059822 (18)	0.03125 (19)
Cl12	0.42965 (12)	0.67724 (5)	0.126298 (19)	0.0324 (2)
Cl13	0.60562 (11)	0.87259 (5)	0.107010 (18)	0.03002 (19)
Cl14	0.40684 (11)	0.81893 (5)	0.043124 (19)	0.0313 (2)
Cl21	0.92291 (11)	0.38662 (5)	0.062999 (17)	0.02863 (18)
Cl22	0.91811 (11)	0.18729 (5)	0.036970 (17)	0.02770 (18)
Cl23	0.91308 (12)	0.10889 (5)	0.103458 (17)	0.02896 (19)
Cl24	0.92597 (11)	0.30808 (5)	0.129495 (17)	0.02811 (18)
Cl31	0.41369 (12)	0.11216 (5)	0.231532 (18)	0.0319 (2)
C132	0.60609 (13)	0.30356 (5)	0.215033 (19)	0.0367 (2)
C133	0.41713 (12)	0.38062 (5)	0.274342 (18)	0.0331 (2)
C134	0.42615 (11)	0.17926 (5)	0.300217 (17)	0.02779 (18)
N1	0.6974 (3)	0.49583 (16)	0.11481 (6)	0.0214 (5)
H1B	0.7653	0.4542	0.1046	0.026*
H1A	0.6597	0.5391	0.1016	0.026*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

N2	0.3228 (3)	0.84386 (16)	0.16754 (6)	0.0224 (6)
H2A	0.3656	0.8015	0.1545	0.027*
H2B	0.2474	0.8148	0.1807	0.027*
N3	0.6853 (3)	1.00067 (16)	0.05136 (5)	0.0209 (5)
H3A	0.6517	0.9579	0.0650	0.025*
H3B	0.7567	1.0426	0.0610	0.025*
N4	0.3125 (3)	0.65577 (16)	-0.00079 (5)	0.0202 (5)
H4A	0.3491	0.6967	0.0133	0.024*
H4B	0.2415	0.6860	-0.0144	0.024*
N5	0.6930 (3)	0.15370 (16)	0.16653 (5)	0.0216 (6)
H5A	0.7597	0.1827	0.1522	0.026*
H5B	0.6629	0.1956	0.1807	0.026*
N6	0.3193 (3)	0.49932 (16)	0.21770 (6)	0.0215 (6)
H6B	0.3507	0.4604	0.2327	0.026*
H6A	0.2478	0.5441	0.2257	0.026*
C11	0.4155 (5)	0.4129 (2)	0.10258 (8)	0.0362 (8)
H11A	0.3791	0.4619	0.0893	0.054*
H11B	0.3062	0.3848	0.1110	0.054*
H11C	0.4850	0.3678	0.0915	0.054*
C12	0.5325 (4)	0.4500 (2)	0.12712 (7)	0.0254 (7)
H12A	0.4606	0.4935	0.1389	0.031*
H12B	0.5712	0.4004	0.1404	0.031*
C13	0.8173 (4)	0.5392 (2)	0.13752 (7)	0.0281 (7)
H13A	0.8636	0.4930	0.1515	0.034*
H13B	0.7460	0.5839	0.1489	0.034*
C14	0.9751 (5)	0.5849 (3)	0.12256 (9)	0.0465 (10)
H14A	1.0440	0.5405	0.1111	0.070*
H14B	1.0554	0.6119	0.1375	0.070*
H14C	0.9288	0.6321	0.1093	0.070*
C21	0.0591 (5)	0.8678 (3)	0.13455 (10)	0.0476 (10)
H21A	0.1081	0.8253	0.1200	0.071*
H21B	-0.0128	0.9141	0.1243	0.071*
H21C	-0.0191	0.8355	0.1485	0.071*
C22	0.2136 (4)	0.9113 (2)	0.15093 (7)	0.0288 (7)
H22A	0.2935	0.9431	0.1367	0.035*
H22B	0.1642	0.9565	0.1649	0.035*
C23	0.4815 (4)	0.8823 (2)	0.18419 (8)	0.0295 (8)
H23A	0.4376	0.9293	0.1979	0.035*
H23B	0.5673	0.9108	0.1702	0.035*
C24	0.5795 (5)	0.8103 (3)	0.20133 (9)	0.0491 (11)
H24A	0.4940	0.7813	0.2150	0.074*
H24B	0.6802	0.8374	0.2126	0.074*
H24C	0.6283	0.7653	0.1876	0.074*
C31	0.9615 (5)	0.9117 (3)	0.04137 (8)	0.0411 (9)
H31A	1.0374	0.9571	0.0513	0.062*
H31B	1.0326	0.8824	0.0258	0.062*
H31C	0.9221	0.8666	0.0558	0.062*
C32	0.7971 (4)	0.9564 (2)	0.02798 (7)	0.0258 (7)
H32A	0.8368	1.0020	0.0134	0.031*

H32B	0.7220	0.9109	0.0175	0.031*
C33	0.5180 (4)	1.0460 (2)	0.04010 (7)	0.0251 (7)
H33A	0.4438	1.0026	0.0286	0.030*
H33B	0.5528	1.0960	0.0268	0.030*
C34	0.4059 (5)	1.0825 (2)	0.06546 (8)	0.0357 (8)
H34A	0.3667	1.0326	0.0781	0.054*
H34B	0.2981	1.1138	0.0576	0.054*
H34C	0.4802	1.1247	0.0771	0.054*
C41	0.0368 (5)	0.6264 (3)	0.02894 (9)	0.0453 (10)
H41A	0.0792	0.6670	0.0446	0.068*
H41B	-0.0378	0.5784	0.0376	0.068*
H41C	-0.0367	0.6603	0.0146	0.068*
C42	0.1987 (4)	0.5856 (2)	0.01366 (7)	0.0272 (7)
H42A	0.2740	0.5523	0.0283	0.033*
H42B	0.1556	0.5421	-0.0014	0.033*
C43	0.4786 (4)	0.6202 (2)	-0.01612 (7)	0.0254 (7)
H43A	0.4407	0.5799	-0.0325	0.031*
H43B	0.5529	0.5846	-0.0020	0.031*
C44	0.5921 (5)	0.6961 (2)	-0.02826 (8)	0.0366 (8)
H44A	0.5201	0.7300	-0.0428	0.055*
H44B	0.7014	0.6715	-0.0378	0.055*
H44C	0.6288	0.7364	-0.0121	0.055*
C51	0.4105 (5)	0.1946 (2)	0.14004 (8)	0.0354 (8)
H51A	0.3785	0.2372	0.1557	0.053*
H51B	0.2985	0.1703	0.1311	0.053*
H51C	0.4821	0.2256	0.1249	0.053*
C52	0.5214 (4)	0.1188 (2)	0.15287 (7)	0.0247 (7)
H52A	0.4486	0.0870	0.1680	0.030*
H52B	0.5519	0.0752	0.1371	0.030*
C53	0.8102 (4)	0.0835 (2)	0.18044 (7)	0.0272 (7)
H53A	0.8341	0.0349	0.1660	0.033*
H53B	0.7458	0.0569	0.1976	0.033*
C54	0.9882 (4)	0.1238 (3)	0.19054 (8)	0.0362 (9)
H54A	1.0541	0.1478	0.1735	0.054*
H54B	1.0625	0.0773	0.2002	0.054*
H54C	0.9641	0.1726	0.2046	0.054*
C61	0.0415 (5)	0.4100 (3)	0.20903 (10)	0.0479 (10)
H61A	0.0772	0.3666	0.2243	0.072*
H61B	-0.0318	0.3796	0.1938	0.072*
H61C	-0.0307	0.4584	0.2180	0.072*
C62	0.2104 (4)	0.4494 (2)	0.19511 (7)	0.0285 (7)
H62A	0.2856	0.4005	0.1866	0.034*
H62B	0.1748	0.4909	0.1789	0.034*
C63	0.4895 (4)	0.5406 (2)	0.20549 (7)	0.0262 (7)
H63A	0.4566	0.5875	0.1908	0.031*
H63B	0.5623	0.4939	0.1953	0.031*
C64	0.6021 (5)	0.5821 (2)	0.23000 (8)	0.0366 (9)
H64A	0.5303	0.6289	0.2399	0.055*
H64B	0.7130	0.6089	0.2217	0.055*

H64C	0.6359	0.5354	0.2443	3 0.0	55*	
Atomic displa	acement parameter.	s (Å ²)				
1	1 1/ ¹¹	U ²²	L ³³	<i>U</i> ¹²	<i>U</i> ¹³	1/23
Cul	0.0198(2)	0.0189(2)	0.0259.(2)	0.00035(14)	0.00180 (16)	0.00107(15)
Cu2	0.0170(2)	0.0169(2)	0.0205 (2)	0.00001 (14)	0.00100(10)	0.00040 (14)
Cu3	0.01717(19)	0.0100((1))	0.0200(2)	0.00079 (14)	0.00077(15)	0.00094 (15)
Cl11	0.0407(5)	0.0170(2) 0.0278(4)	0.0223(2) 0.0252(4)	0.00079(11)	0.0022 (13)	0.0007 (3)
Cl12	0.0428(5)	0.0270(1)	0.0232(1) 0.0346(5)	0.0029(3)	0.0021(1) 0.0175(4)	0.0007(3)
C112	0.0354(5)	0.0291(4)	0.0256(4)	-0.0127(3)	-0.0006(3)	0.0010(3)
C114	0.0391(5)	0.0291(1) 0.0198(4)	0.0250(1)	0.0127(3)	-0.0144(4)	-0.0002(3)
C121	0.0301(5)	0.0190(1)	0.0242(4)	0.0020(3)	0.0026 (3)	0.0002(3)
C122	0.0413(5)	0.0202(4)	0.0212(1)	0.0007(3)	0.0020(3)	-0.0011(3)
C122	0.0449(5)	0.0202(1)	0.0236(4)	-0.0014(3)	0.0003(3)	0.0010(3)
C123	0.0419(5)	0.0104(4) 0.0205(4)	0.0230(4)	0.0014(3)	0.0007(4)	-0.0002(3)
C124	0.0396 (5)	0.0205(4)	0.0220(4) 0.0268(4)	-0.0120(3)	0.0013(3)	-0.0005(3)
C132	0.0499 (5)	0.0293(4) 0.0248(4)	0.0200(4)	-0.0058(4)	0.0033(4)	-0.0049(3)
C133	0.0499(5)	0.0248(4) 0.0204(4)	0.0335(3) 0.0275(4)	0.0050(4)	0.0235(4) 0.0124(4)	0.0017(4)
C134	0.0397 (5)	0.0201(1)	0.0275(4)	0.0012(3)	0.0121(1) 0.0037(3)	0.0031(3)
N1	0.0397(3)	0.0202(4)	0.0233(4) 0.0212(14)	0.0014(3)	0.0037(3)	-0.0010(10)
N2	0.0226(13)	0.0204(13) 0.0171(13)	0.0212(14) 0.0275(15)	0.0021(10)	0.0011(11)	0.0013(11)
N3	0.0220(13) 0.0218(13)	0.0171(13)	0.0273(13) 0.0222(14)	-0.0012(10)	0.0021(11) 0.0004(11)	-0.0008(10)
N4	0.0210(13)	0.0180(13)	0.0222(11) 0.0228(14)	-0.0012(10)	-0.0018(10)	0.0003 (10)
N5	0.0226 (13)	0.0100(13)	0.0220(11) 0.0231(14)	-0.0002(10)	0.0010(10)	0.0009(10)
N6	0.0220(13)	0.0195(13) 0.0201(13)	0.0231(14) 0.0235(14)	0.0002(10)	0.0029(11)	0.0019(10)
C11	0.0200(19)	0.0201(15)	0.0233(11) 0.043(2)	-0.0107(15)	0.0002 (16)	0.0011(11) 0.0034(17)
C12	0.0369(17)	0.033(2)	0.015(2) 0.0265(18)	-0.0017(13)	0.0002(10) 0.0078(14)	0.0091(17) 0.0009(13)
C13	0.0203(17) 0.0311(18)	0.0250(10) 0.0268(17)	0.0263(18)	-0.0021(14)	-0.0046(14)	-0.0030(14)
C14	0.036(2)	0.053(3)	0.0203(10)	-0.0169(18)	0.0004(19)	-0.011(2)
C21	0.035(2)	0.039(3)	0.058(3)	0.0105(18)	-0.0163(19)	0.011(2)
C22	0.035(2)	0.019(2) 0.0235(17)	0.030(3)	0.0002(13)	0.0105(15)	0.003(2) 0.0017(14)
C23	0.0255(17)	0.0294(18)	0.034(2)	-0.0055(14)	-0.0036(14)	-0.0018(15)
C24	0.0233(17)	0.021(3)	0.055(3)	0.0009 (19)	-0.020(2)	0.0010(10)
C31	0.038(2)	0.031(3) 0.048(2)	0.038(2)	0.0009(17) 0.0141(17)	0.020(2)	-0.0007(18)
C32	0.0262(17)	0.0261(17)	0.0252(18)	-0.0011(13)	0.0061 (14)	-0.0044(13)
C33	0.0232(17)	0.0201(17)	0.0202(10) 0.0305(18)	0.0025(12)	-0.0042(14)	0.0029(13)
C34	0.0292(10) 0.0295(19)	0.0210(10)	0.040(2)	0.0025(12)	0.0059(16)	0.0029(13)
C41	0.0233(2)	0.030(2) 0.047(2)	0.057(3)	-0.0060(17)	0.0029(19)	0.0000 (17)
C42	0.025(2)	0.0227(16)	0.037(3)	-0.0058(13)	0.0129(19) 0.0038(14)	0.001(2) 0.0041(14)
C43	0.0252(17)	0.0227(10) 0.0270(17)	0.0241(17)	0.0054(13)	0.0020(11)	-0.0028(13)
C44	0.0202(17) 0.0309(19)	0.0270(17) 0.036(2)	0.0211(17) 0.043(2)	0.0006 (15)	0.0079 (16)	-0.0020(12)
C51	0.0267(18)	0.036(2)	0.043(2)	0.0001 (15)	-0.0014(16)	-0.0009(17)
C52	0.0220 (16)	0.0248(17)	0.0272(18)	-0.0047(12)	0.0029 (13)	0.0006 (13)
C53	0.0292(18)	0.0242(17)	0.0284(18)	0.0043 (13)	0.0028(14)	0.0042(14)
C54	0.0283 (19)	0.047 (2)	0.033 (2)	0.0048 (16)	-0.0033(16)	0.0059 (17)
C61	0.036 (2)	0.051(2)	0.057(3)	-0.0185(18)	-0.0003(19)	-0.003(2)
C62	0.0283 (18)	0.0282 (18)	0.0291 (19)	-0.0026(14)	-0.0022(14)	-0.0050(14)

C63	0.0235 (17)	0.0276 (17)	0.0276 (18)	-0.0024 (13)	0.0072 (14)	0.0029 (14)	
C64	0.0328 (19)	0.037 (2)	0.040 (2)	-0.0112 (15)	-0.0024 (16)	0.0079 (17)	
Geometric parai	neters (Å, °)						
Cu1—Cl13	Cu1 - Cl13 2 2371 (12)		C23—0	224	1.50	0 (5)	
Cu1—Cl11		2.2371(12) 2.2410(12)	C23—I	H23A	0.9900		
Cu1—Cl14		2,2540 (12)	C23—I	H23B	0.9900		
Cu1—Cl12		2.2570 (13)	C24—I	H24A	0.98	00	
Cu2—Cl23		2.2550 (13)	C24—I	H24B	0.98	00	
Cu2—Cl21		2.2570 (13)	C24—I	H24C	0.9800		
Cu2—Cl22		2.2764 (13)	C31—0	232	1.498 (5)		
Cu2—Cl24		2.2775 (13)	C31—I	H31A	0.9800		
Cu3—Cl31		2.2372 (13)	C31—I	H31B	0.9800		
Cu3—Cl33		2.2636 (13)	C31—I	H31C	0.9800		
Cu3—Cl32		2.2683 (12)	C32—I	H32A	0.9900		
Cu3—Cl34		2.2700 (13)	C32—I	H32B	0.99	00	
N1-C13		1.493 (4)	C33—0	234	1.51	4 (5)	
N1-C12		1.495 (4)	C33—I	H33A	0.99	00	
N1—H1B		0.9200	C33—I	H33B	0.99	00	
N1—H1A		0.9200	C34—I	H34A	0.98	00	
N2—C22		1.483 (4)	C34—I	H34B	0.98	00	
N2—C23		1.494 (4)	C34—I	H34C	0.98	0.9800	
N2—H2A		0.9200	C41—0	C42	1.501 (5)		
N2—H2B		0.9200	C41—I	H41A	0.9800		
N3—C33		1.485 (4)	C41—I	H41B	0.9800		
N3—C32		1.493 (4)	C41—I	H41C	0.9800		
N3—H3A		0.9200	C42—I	H42A	0.99	00	
N3—H3B		0.9200	C42—I	H42B	0.99	00	
N4		1.487 (4)	C43—0	C44	1.50	5 (5)	
N4—C43		1.498 (4)	C43—I	H43A	0.99	00	
N4—H4A		0.9200	C43—I	H43B	0.99	00	
N4—H4B		0.9200	C44—I	H44A	0.98	00	
N5—C53		1.487 (4)	C44—I	H44B	0.98	00	
N5—C52		1.490 (4)	C44—I	H44C	0.98	00	
N5—H5A		0.9200	C51—0	C51—C52 1.501 (4)		1 (4)	
N5—H5B		0.9200	C51—H51A 0.980		00		
N6—C62		1.490 (4)	C51—H51B		0.9800		
N6—C63		1.496 (4)	C51—I	H51C	0.9800		
N6—H6B		0.9200	C52—H52A		0.9900		
N6—H6A		0.9200	C52—H52B		0.9900		
C11—C12		1.503 (4)	C53—0	254	1.502 (4)		
C11—H11A		0.9800	C53—I	H53A	0.99	00	
C11—H11B		0.9800	C53—I	H53B	0.99	00	
C11—H11C		0.9800	C54—I	H54A	0.98	00	
C12—H12A		0.9900	C54—I	H54B	0.98	00	
C12—H12B		0.9900	C54—I	H54C	0.98	00	
C13—C14		1.503 (5)	C61—0	062	1.50	7 (5)	
C13—H13A		0.9900	C61—I	H61A	0.98	00	

С13—Н13В	0.9900	С61—Н61В	0.9800
C14—H14A	0.9800	C61—H61C	0.9800
C14—H14B	0.9800	C62—H62A	0.9900
C14—H14C	0.9800	C62—H62B	0.9900
C21—C22	1.495 (5)	C63—C64	1.510 (4)
C21—H21A	0.9800	С63—Н63А	0.9900
C21—H21B	0.9800	С63—Н63В	0.9900
C21—H21C	0.9800	C64—H64A	0.9800
C22—H22A	0.9900	C64—H64B	0.9800
С22—Н22В	0.9900	С64—Н64С	0.9800
Cl13—Cu1—Cl11	146.02 (4)	C23—C24—H24C	109.5
Cl13—Cu1—Cl14	95.57 (5)	H24A—C24—H24C	109.5
Cl11—Cu1—Cl14	94.24 (5)	H24B—C24—H24C	109.5
Cl13—Cu1—Cl12	94.18 (5)	С32—С31—Н31А	109.5
Cl11—Cu1—Cl12	95.64 (5)	С32—С31—Н31В	109.5
Cl14—Cu1—Cl12	145.95 (4)	H31A—C31—H31B	109.5
Cl23—Cu2—Cl21	177.81 (4)	С32—С31—Н31С	109.5
Cl23—Cu2—Cl22	90.77 (4)	H31A—C31—H31C	109.5
Cl21—Cu2—Cl22	89.25 (4)	H31B—C31—H31C	109.5
Cl23—Cu2—Cl24	89.24 (4)	N3—C32—C31	110.5 (3)
Cl21—Cu2—Cl24	90.72 (4)	N3—C32—H32A	109.6
Cl22—Cu2—Cl24	179.32 (3)	С31—С32—Н32А	109.6
Cl31—Cu3—Cl33	159.70 (4)	N3—C32—H32B	109.6
Cl31—Cu3—Cl32	92.64 (5)	С31—С32—Н32В	109.6
Cl33—Cu3—Cl32	91.02 (4)	H32A—C32—H32B	108.1
Cl31—Cu3—Cl34	92.80 (5)	N3—C33—C34	110.5 (3)
Cl33—Cu3—Cl34	90.17 (4)	N3—C33—H33A	109.5
Cl32—Cu3—Cl34	160.99 (4)	С34—С33—Н33А	109.5
C13—N1—C12	114.3 (2)	N3—C33—H33B	109.5
C13—N1—H1B	108.7	С34—С33—Н33В	109.5
C12—N1—H1B	108.7	H33A—C33—H33B	108.1
C13—N1—H1A	108.7	С33—С34—Н34А	109.5
C12—N1—H1A	108.7	C33—C34—H34B	109.5
H1B—N1—H1A	107.6	H34A—C34—H34B	109.5
C22—N2—C23	114.4 (2)	С33—С34—Н34С	109.5
C22—N2—H2A	108.7	H34A—C34—H34C	109.5
C23—N2—H2A	108.7	H34B—C34—H34C	109.5
C22—N2—H2B	108.7	C42—C41—H41A	109.5
C23—N2—H2B	108.7	C42—C41—H41B	109.5
H2A—N2—H2B	107.6	H41A—C41—H41B	109.5
C33—N3—C32	114.2 (2)	C42—C41—H41C	109.5
C33—N3—H3A	108.7	H41A—C41—H41C	109.5
C32—N3—H3A	108.7	H41B—C41—H41C	109.5
C33—N3—H3B	108.7	N4—C42—C41	111.4 (3)
C32—N3—H3B	108.7	N4—C42—H42A	109.4
H3A—N3—H3B	107.6	C41—C42—H42A	109.4
C42—N4—C43	114.5 (2)	N4—C42—H42B	109.4
C42—N4—H4A	108.6	C41—C42—H42B	109.4
C43—N4—H4A	108.6	H42A—C42—H42B	108.0

C42—N4—H4B	108.6	N4—C43—C44	110.8 (3)
C43—N4—H4B	108.6	N4—C43—H43A	109.5
H4A—N4—H4B	107.6	C44—C43—H43A	109.5
C53—N5—C52	114.6 (2)	N4—C43—H43B	109.5
C53—N5—H5A	108.6	C44—C43—H43B	109.5
C52—N5—H5A	108.6	H43A—C43—H43B	108.1
C53—N5—H5B	108.6	C43—C44—H44A	109.5
C52—N5—H5B	108.6	C43—C44—H44B	109.5
H5A—N5—H5B	107.6	H44A—C44—H44B	109.5
C62—N6—C63	113.2 (2)	C43—C44—H44C	109.5
C62—N6—H6B	108.9	H44A—C44—H44C	109.5
C63—N6—H6B	108.9	H44B—C44—H44C	109.5
C62—N6—H6A	108.9	С52—С51—Н51А	109.5
C63—N6—H6A	108.9	С52—С51—Н51В	109.5
H6B—N6—H6A	107.8	H51A—C51—H51B	109.5
C12—C11—H11A	109.5	С52—С51—Н51С	109.5
C12—C11—H11B	109.5	H51A—C51—H51C	109.5
H11A—C11—H11B	109.5	H51B-C51-H51C	109.5
C12—C11—H11C	109.5	N5-C52-C51	110.7 (3)
H11A—C11—H11C	109.5	N5—C52—H52A	109.5
H11B—C11—H11C	109.5	С51—С52—Н52А	109.5
N1-C12-C11	110.4 (3)	N5—C52—H52B	109.5
N1—C12—H12A	109.6	С51—С52—Н52В	109.5
C11—C12—H12A	109.6	H52A—C52—H52B	108.1
N1—C12—H12B	109.6	N5—C53—C54	110.3 (3)
C11—C12—H12B	109.6	N5—C53—H53A	109.6
H12A—C12—H12B	108.1	С54—С53—Н53А	109.6
N1-C13-C14	109.5 (3)	N5—C53—H53B	109.6
N1—C13—H13A	109.8	С54—С53—Н53В	109.6
C14—C13—H13A	109.8	Н53А—С53—Н53В	108.1
N1—C13—H13B	109.8	С53—С54—Н54А	109.5
C14—C13—H13B	109.8	С53—С54—Н54В	109.5
H13A—C13—H13B	108.2	H54A—C54—H54B	109.5
C13—C14—H14A	109.5	С53—С54—Н54С	109.5
C13—C14—H14B	109.5	H54A—C54—H54C	109.5
H14A—C14—H14B	109.5	H54B—C54—H54C	109.5
C13—C14—H14C	109.5	С62—С61—Н61А	109.5
H14A—C14—H14C	109.5	С62—С61—Н61В	109.5
H14B—C14—H14C	109.5	H61A—C61—H61B	109.5
C22—C21—H21A	109.5	С62—С61—Н61С	109.5
C22—C21—H21B	109.5	H61A—C61—H61C	109.5
H21A—C21—H21B	109.5	H61B—C61—H61C	109.5
C22—C21—H21C	109.5	N6—C62—C61	110.0 (3)
H21A—C21—H21C	109.5	N6—C62—H62A	109.7
H21B—C21—H21C	109.5	C61—C62—H62A	109.7
N2—C22—C21	111.3 (3)	N6—C62—H62B	109.7
N2—C22—H22A	109.4	С61—С62—Н62В	109.7
C21—C22—H22A	109.4	H62A—C62—H62B	108.2
N2—C22—H22B	109.4	N6—C63—C64	110.3 (3)

C21—C22—H22B	109.4	N6—C63—H63A	109.6
H22A—C22—H22B	108.0	С64—С63—Н63А	109.6
N2—C23—C24	110.9 (3)	N6—C63—H63B	109.6
N2—C23—H23A	109.5	С64—С63—Н63В	109.6
C24—C23—H23A	109.5	H63A—C63—H63B	108.1
N2—C23—H23B	109.5	C63—C64—H64A	109.5
С24—С23—Н23В	109.5	C63—C64—H64B	109.5
H23A—C23—H23B	108.0	H64A—C64—H64B	109.5
C23—C24—H24A	109.5	С63—С64—Н64С	109.5
C23—C24—H24B	109.5	H64A—C64—H64C	109.5
H24A—C24—H24B	109.5	H64B—C64—H64C	109.5
C13—N1—C12—C11	176.9 (3)	C43—N4—C42—C41	179.1 (3)
C12—N1—C13—C14	-178.5 (3)	C42—N4—C43—C44	-176.1 (3)
C23—N2—C22—C21	179.2 (3)	C53—N5—C52—C51	178.7 (3)
C22—N2—C23—C24	177.6 (3)	C52—N5—C53—C54	173.8 (3)
C33—N3—C32—C31	-179.4 (3)	C63—N6—C62—C61	-179.9 (3)
C32—N3—C33—C34	175.5 (3)	C62—N6—C63—C64	-174.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A	
N1—H1A…Cl11	0.92	2.31	3.214 (3)	166	
N1—H1B···Cl21	0.92	2.43	3.298 (3)	158	
N2—H2A…Cl12	0.92	2.29	3.197 (3)	168	
N3—H3A…Cl13	0.92	2.31	3.210 (3)	166	
N3—H3B···Cl23 ⁱ	0.92	2.44	3.298 (3)	155	
N4—H4A…Cl14	0.92	2.30	3.205 (3)	169	
N4—H4B…Cl22 ⁱⁱ	0.92	2.44	3.306 (3)	158	
N5—H5A…Cl24	0.92	2.45	3.315 (3)	156	
N5—H5B…Cl32	0.92	2.27	3.190 (3)	176	
N6—H6A…Cl31 ⁱⁱⁱ	0.92	2.49	3.320 (3)	151	
N6—H6B…Cl33	0.92	2.28	3.188 (3)	172	
Symmetry codes: (i) $x, y+1, z$; (ii) $-x+1, -y+1, -z$; (iii) $-x+1/2, y+1/2, -z+1/2$.					

Fig. 3